Типы кулеров на тепловых трубках - Новые конструкции эффективных теплоотводящих поверхностей (радиаторов)

ОГЛАВЛЕНИЕ

 

Новые конструкции эффективных теплоотводящих поверхностей (радиаторов)

Величина среднего перегрева (по отношению к окружающей среде) любого из теплонагруженных элементов ПК (процессор, видеокарта и т.д.) прямо влияет на надежность его функционирования, и одним из существенных факторов, определяющих перегрев, является тепловое сопротивление радиатора. Последний представляет собой, как правило, оребренную теплоотдающую (теплосбрасывающую) поверхность с высокоразвитой площадью теплоотдачи. В свою очередь, на внешнее термическое сопротивление радиатора влияют в основном два параметра: коэффициент теплоотдачи и площадь оребренной теплоотдающей поверхности.

Коэффициент теплоотдачи зависит от множества факторов, в том числе от способа передачи теплоты, скорости движения теплоносителя, его теплофизических свойств, разности средней температуры поверхности конструкции элемента и теплоносителя (избыточная температура) и т.д. Так, в условиях естественной конвекции и радиации (передачи теплоты излучением) при избыточной температуре 10 К коэффициент теплоотдачи лежит в диапазоне 2—40 Вт/м2К, а максимально возможная поверхностная плотность теплового потока, сбрасываемая радиатором, составляет 0,4 Вт/см2.

В случае принудительной конвекции воздуха, когда в системах охлаждения применяется вентилятор или другой нагнетатель (наиболее распространенный вариант конструкции кулеров), при величинах скорости теплоносителя до 2—3 м/с и той же избыточной температуре 10°С, коэффициент теплоотдачи находится уже в пределах 20— 100 Вт/м 2К, а максимально отводимая радиатором плотность теплового потока равна 1 Вт/см 2. При изменении агрегатного состояния теплоносителя — кипении или испарении хладагентов, коэффициенты теплоотдачи и отводимые тепловые потоки возрастают на порядки (для процесса кипения коэффициент теплоотдачи изменяется в диапазоне (5—10)•10 3 Вт/м 2К, а плотности тепловых потоков лежат в диапазоне 10—20 Вт/см 2).

Итак, зависимость термического сопротивления радиатора от коэффициента теплоотдачи достаточно проста — чем выше коэффициент, тем ниже тепловое сопротивление и, соответственно, выше эффективность радиатора. Аналогичная ситуация имеет место и в отношении теплосбрасывающей поверхности (которая определяется геометрическими параметрами оребрения) — чем больше площадь этой поверхности, тем ниже тепловое сопротивление радиатора.

В итоге, разработчики новых конструкций радиаторов должны стремиться к одновременному увеличению, как коэффициента теплоотдачи, так и площади поверхности теплообмена, что позволит эффективно минимизировать внешнее термическое сопротивление радиатора в целом. Однако если действовать в лоб, такой подход может породить цепь взаимоисключающих требований. Так, излишнее увеличение площади поверхности теплообмена автоматически приводит к резкому увеличению габаритов, массы радиатора, что сопровождается повышением гидродинамических потерь вместе с увеличением теплового сопротивления. И наоборот, стремление к чрезмерной компактности оребрения обязательно уменьшит коэффициенты теплоотдачи, и соответственно вновь увеличит тепловое сопротивление.

Из сказанного ясно, что в процессе поиска новых конструктивных решений радиаторов необходимо придерживаться золотой середины, чтобы действительно интенсифицировать теплообмен, уменьшить потери энергии при эксплуатации радиатора и добиться его наибольшей тепловой эффективности. Как показывает многолетний опыт, при разработке эффективных радиаторов наиболее плодотворными оказались следующие идеи: первая — это создание благоприятных гидродинамических условий движения теплоносителя, позволяющих обеспечить опережающий рост коэффициентов теплоотдачи по сравнению с гидравлическим сопротивлением. Вторая идея заключается в применении развитых теплоотдающих поверхностей при малых значениях эквивалентных размеров оребрения, что позволяет резко увеличить компактность радиатора без увеличения теплового сопротивления.

Для реализации первой идеи, обычно прибегают к турбулизации потока вблизи поверхности теплообмена. Этого достигают применением ребер специальной конструкции совместно с различными турбулизирующими элементами. Использование таких поверхностей позволяет создавать отрывные зоны, турбулизировать поток, уменьшать толщину пограничного слоя и, благодаря этому усиливать интенсивность теплообмена. При этом следует исходить из того, что важна не турбулизация вообще, а турбулизация именно в том месте сечения оребрения, где возникает наибольший градиент температуры (как правило, это область вблизи поверхности теплообмена — область ламинарного подслоя). Турбулизация же ядра потока может привести лишь к существенному росту гидродинамических потерь при незначительном увеличении теплоотдачи.

Реализация идеи высокой компактности радиатора обычно состоит в проектировании достаточно развитой площади оребрения в заданных габаритах (объеме) за счет применения ребер специализированных конструкций, вариации различных геометрических размеров и различной компоновки оребрения.

В целях создания высокоэффективных радиаторов разработчики стараются использовать эти две главных идеи одновременно, то есть конструируют компактную теплоотдающую поверхность с развитыми площадями оребрения и обеспечивают соответствующую форму межреберных каналов, необходимую для эффективной турбулизации потока. На рис.7 приведены опытные образцы новых медных радиаторов с сетчато-проволочным и гофрированным оребрениями (теплоотводящие ребра закреплены на плоских и цилиндрических основаниях с различными габаритными размерами). По сравнению с традиционными радиаторами, имеющими пластинчатые ребра, тепловая эффективность сетчато-проволочного оребрения увеличивается на 20—40% при умеренном росте динамических потерь (на скорости обдува 2—3 м/с), а масса таких радиаторов меньше в 1,5 — 1,8 раза. При равных затратах меди на изготовление радиаторов с гладкими и гофрированными ребрами и одинаковых мощностях вентиляторов на прокачку теплоносителя, гофрировка также позволяет увеличить отводимые тепловые потоки (на 40—60%), однако сопротивление потоку возрастает уже более существенно (в 1,9 раза).



Рис.7. Новые эффективные конструкции радиаторов.