Типы памяти

ОГЛАВЛЕНИЕ

Описание типов памяти и разъемов памяти.

Разъемы SIMM и DIMM

 

72-пиновые разъемы SIMM ожидает та же участь, которая несколькими годами раньше постигла их 30-пиновых предшественников, приказавших долго жить. Им на смену в 1996 г. пришел новый разъем DIMM со 168 контактами, а сейчас появляется еще разъем RIMM. Если на симмах реализовывались FPM и EDO RAM, то на диммах - более современная технология SDRAM. В системную плату модули SIMM необходимо было вставлять только попарно, а DIMM можно выбрать по одному, что связано с разрядностью внешней шины данных процессоров Pentium. Такой способ установки предоставляет больше возможностей для варьирования объема оперативной памяти.

 

Модуль памяти Registered DIMM. 

Первоначально материнские платы поддерживали оба разъема памяти, но уже довольно продолжительное время они комплектуются исключительно разъемами DIMM. Это связано с упомянутой возможностью устанавливать их по одному модулю и тем, что SDRAM обладает большим быстродействием по сравнению с FPM и EDORAM.

Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка - несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа.

Спецификация SDRAM PC100

Еще одно преимущество памяти SDRAM перед EDO заключается в том, что EDO не работает на частотах свыше 66 МГц, а SDRAM доступна частота шины памяти до 100 МГц. Стандартный модуль памяти SDRAM PC100.

 

Выпустив чипсет 440BX с официальной поддержкой тактовой частоты системной шины до 100 МГц, Intel сделала оговорку, что модули памяти SDRAM неустойчиво работают на такой скорости. После заявления Intel представила новую спецификацию, описывающую все тонкости, - SDRAM PC100.

Спецификация памяти PC100. Ключевые моменты.
  • Определение минимальной и максимальной длины пути для каждого сигнала в модуле. 
  • Определение ширины дорожек и расстояния между ними. 
  • 6-слойные платы с отдельными сплошными слоями «масса» и «питание». 
  • Детальная спецификация расстояний между слоями. 
  • Строгое определение длины тактового импульса, его маршрутизации, момента начала и окончания. 
  • Подавляющие резисторы в цепях передачи данных. 
  • Детальная спецификация компонент SDRAM. Модули должны содержать чипы памяти SDRAM, совместимые с Intel SDRAM Component SPEC (version 1.5).

Данной спецификации отвечают только 8-нс чипы, а 10-нс чипы, по мнению Intel, неспособны устойчиво работать на частоте 100 МГц.

  • Детальная спецификация программирования EEPROM. Модуль должен включать интерфейс SPD, совместимый с Intel SPD Component SPEC (version 1.2). 
  • Особые требования к маркировке. 
  • Подавление электромагнитной интерференции. 
  • Местами позолоченные печатные платы.

Введение стандарта памяти PC100 в некоторой степени можно считать рекламной уловкой, но, как известно, реклама - двигатель торговли, и все известные производители памяти и системных плат поддержали эту спецификацию, а с появлением следующего поколения памяти переходят на его производство.

Спецификация PC100 является очень критичной, одно описание с дополнениями занимает больше 70 страниц.

Для комфортной работы с приложениями, требующими высокого быстродействия, разработано следующее поколение синхронной динамической памяти - SDRAM PC133. В продаже уже можно найти модули, поддерживающие эту спецификацию, причем цена на них превышает цены соответствующих моделей PC100 на 30%. Насколько это оправдано, судить пока довольно сложно, т. к. нам не удалось протестировать такие модули. Продвижением данного стандарта на рынок занимается уже не Intel, а их главный конкурент на рынке процессоров AMD. Intel же решила поддерживать память от Rambus, мотивируя это тем, что она лучше сочетается с шиной AGP 4x.

Cравнение параметров памяти PC100 и PC133PC100 2-2-2PC100 3-2-3PC133 3-3-3
Speed Sort Indicator-8-8-7.5
Max. Frequence @ CL=3100MHz100MHz133MHz
Access Time from Clock @ CL=36ns6ns5,4ns
Max. Frequence @ CL=2100 MHz83MHzN/A
Access Time from Clock @ CL=26ns7nsN/A
Setup/Hold Time2/1n2/1n1,5/0,8n

Latency
CL20ns30ns22,5ns
Trcd20ns20ns22,5ns
Trp20ns30ns22,5ns

133-МГц чипы направлены на использование с новым семейством микропроцессоров, работающих на частоте системной шины 133 МГц, и полностью совместимы со всеми PC100-продуктами. Такими производителями, как VIA Technologies, Inc., Acer Laboratories Inc. (ALi), OPTi Inc., Silicon Integrated Systems (SiS) и Standard Microsystems Corporation (SMC), разработаны чипсеты, поддерживающие спецификацию PC133.

Недавно появилась еще одна интересная технология - Virtual Channel Memory. VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, совместима с существующими SDRAM, что позволяет делать апгрейд системы без значительных затрат и модификаций. Это решение также нашло поддержку у некоторых производителей чипсетов.

SPD (Serial Presence Detect)

SPD - это небольшой чип, находящийся на модуле памяти и хранящий некоторые его параметры (рабочее напряжение, число банков, тип, емкость, время доступа и т. д.). Информация записывается в микросхемы EEPROM, позволяющие запоминать 2048 бит. Первые 128 байт не могут быть перезаписаны и отводятся под некоторую специальную информацию производителя, а оставшееся место доступно пользователю и содержит данные модуля. На модулях "безымянного" производства, как правило, SPD отсутствует, хотя некоторые материнские платы требуют его наличия (например, платы на чипсете 440LX). Возможно, это сделано, чтобы исключить использование "левой" продукции или чтобы избавить пользователя от необходимости делать вручную настройку памяти в BIOS.


 

Разновидности DRAM

Синхронное выполнение

Сейчас уже не актуально использовать 66-МГц шины памяти. Разработчики DRAM нашли возможность преодолеть этот рубеж и извлекли некоторые дополнительные преимущества путем осуществления синхронного интерфейса.

С асинхронным интерфейсом процессор должен ожидать, пока DRAM закончит выполнение своих внутренних операций, которые обычно занимают около 60 нс. С синхронным управлением DRAM происходит защелкивание информации от процессора под управлением системных часов. Триггеры запоминают адреса, сигналы управления и данных, что позволяет процессору выполнять другие задачи. После определенного количества циклов данные становятся доступны, и процессор может считывать их с выходных линий.

Другое преимущество синхронного интерфейса заключается в том, что системные часы задают только временные границы, необходимые DRAM. Это исключает необходимость наличия множества стробирующих импульсов. В результате упрощается ввод, т. к. контрольные сигналы адреса данных могут быть сохранены без участия процессора и временных задержек. Подобные преимущества также реализованы и в операциях вывода.

Типы высокоскоростной памяти

Всю память с произвольным доступом (RAM) можно разделить на два типа: DRAM (динамическая RAM) и SRAM (статическая RAM).

К первому поколению высокоскоростных DRAM главным образом относят EDO DRAM, SDRAM и RDRAM, а к следующему - ESDRAM, DDR SDRAM, Direct RDRAM, SLDRAM (ранее SynchLink DRAM) и т. д.

SDRAM

SDRAM способна работать на частоте, превышающей частоту работы EDO DRAM. В первой половине 1997 г. SDRAM занимала примерно 25% всего рынка DRAM. Как и предполагалось, к 1998 г. она стала наиболее популярной из существующих высокоскоростных технологий и занимала более 50% рынка памяти. Первоначально SDRAM работала на частоте от 66 до 100 МГц. Сейчас существует память, работающая на частотах от 125 до 143 МГц и даже выше.


Модуль SDRAM на 250Мбайт.

Enhanced SDRAM (ESDRAM)

Для преодоления некоторых проблем с задержкой сигнала, присущих стандартным DRAM-модулям, производители решили встроить небольшое количество SRAM в чип, т. е. создать на чипе кэш. Одним из таких решений, заслуживающих внимания, является ESDRAM от Ramtron International Corporation.

ESDRAM - это по существу SDRAM плюс немного SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кэш-памяти, DRAM-кэш предназначен для хранения наиболее часто используемых данных. Следовательно, уменьшается время доступа к данным медленной DRAM.

DDR SDRAM (SDRAM II)

DDR SDRAM (Double Date Rate SDRAM) является синхронной памятью, реализующей удвоенную скорость передачи данных по сравнению с обычной SDRAM. DDR SDRAM не имеет полной совместимости с SDRAM, хотя использует метод управления, как у SDRAM, и стандартный 168-контактный разъем DIMM.


Наклейка соответствия модуля спецификации SDRAM PC100.

DDR SDRAM достигает удвоенной пропускной способности за счет работы на обеих границах тактового сигнала (на подъеме и спаде), а SDRAM работает только на одной.

SLDRAM

Стандарт SLDRAM является открытым, т. е. не требует дополнительной платы за лицензию, дающую право на производство чипов, что позволяет снизить их стоимость. Подобно предыдущей технологии, SLDRAM использует обе границы тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface. Эта память стремится работать на частоте 400 МГц.

У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии SLDRAM и DRDRAM. Они получили наибольшую популярность и заслуживают внимания.


Модуль памяти DRDRAM. 

RDRAM (Rambus DRAM)

RDRAM представляет спецификацию, созданную Rambus, Inc. Частота работы памяти равна 400 МГц, но за счет использования обеих границ сигнала достигается частота, эквивалентная 800 МГц. Спецификация Rambus сейчас наиболее интересна, так что остановимся на ней подробнее.

Модули от Rambus, Inc.

Direct Rambus™ DRAM - это высокоскоростная динамическая память с произвольным доступом, разработанная Rambus, Inc. Она обеспечивает высокую пропускную способность по сравнению с большинством других DRAM. Direct Rambus DRAMs представляет интегрированную на системном уровне технологию.

Работа Direct RDRAMtm определяется требованиями подсистемы Direct Rambus. Для понимания деталей спецификации Direct Rambus DRAM необходимо понять подсистему памяти Rambus™ в целом.

Direct Rambus Memory System

Подсистема памяти Direct Rambus включает следующие компоненты:

  • Direct Rambus Controller 
  • Direct Rambus Channel 
  • Direct Rambus Connector 
  • Direct Rambus RIMM(tm) 
  • Direct Rambus DRAMs

Физические, электрические и логические части всех этих компонентов определены и специфицированы Rambus, Inc. Это требуется для совместимости и высокоскоростной работы подсистемы Direct Rambus.

Direct Rambus Controller

Контроллер Direct Rambus - это главная шина подсистемы памяти. Он помещается на чипе логики, таком, как PC-чипсет, микропроцессор, графический контроллер или ASIC. Физически можно поместить до четырех Direct Rambus-контроллеров на одном чипе логики. Контроллер представляет собой интерфейс между чипом логики и каналом Direct Rambus. В его обязанности входит генерирование запросов, управление потоком данных и еще ряд функций.

Direct Rambus-контроллер состоит из двух самостоятельных блоков: Rambus ASIC Cell (RAC) и Rambus Memory Controller (RMC).

Direct Rambus Channel

Direct Rambus Channel создает электрическое соединение между Rambus-контроллером и чипами Direct RDRAM. Работа канала основана на 30-ти сигналах, составляющих высокоскоростную шину. Эта шина работает на тактовой частоте 400 МГц и позволяет передавать данные на 800 МГц (данные передаются на обеих границах такта). Такая высокая частота достигается за счет использования некоторых технических приемов. Два канала данных (шириной в байт каждый) позволяют получить пиковую пропускную способность в 1,6 Гбайт/с.

Канал может быть выполнен на обычных системных платах и соответствует форм-фактору SDRAM.

Direct Rambus Connector

Разъем Direct Rambus представляет низкоиндуктивный интерфейс между каналом на модуле RIMM и каналом на материнской плате. Connector - разъем со 168 контактами. Контакты размещены на двух сторонах модуля по 84 с каждой стороны.

Direct Rambus RIMM

Direct Rambus RIMM - это модуль памяти, который включает один или более Direct RDRAM-чипов и организует непрерывность канала. Канал входит в модуль на одном конце, проходит через все чипы DRAM и выходит на другом. По существу RIMM образует непрерывный канал на пути от одного разъема к другому. Недопустимо оставлять свободными разъемы, потому что это приведет к разрыву канала с терминатором, находящимся на системной плате в конце канала. Для решения этой проблемы разработаны модули только с каналом (чипы памяти отсутствуют). Они называются continuity modules и предназначены для заполнения свободных посадочных мест.

Модули Direct Rambus имеют геометрические размеры, сходные с размерами SDRAM DIMMs. Это позволяет вставлять RIMM'ы во все материнские платы с соответствующим форм-фактором. Модули имеют 168 контактов. Еще модули RIMM поддерживают SPD, который используется на DIMM'ах SDRAM. В отличие от SDRAM DIMM, Direct Rambus может содержать любое целое число чипов Direct RDRAM (до максимально возможного).

Direct Rambus RIMMs могут быть как односторонние, так и двухсторонние. Односторонние RIMM используют шестислойную плату и могут содержать от одного до восьми чипов Direct RDRAM. Двухсторонние RIMM используют восьмислойную плату и могут содержать до 16-ти чипов Direct DRAM. Для гарантии совместимости различных товаров Rambus, Inc. обеспечивает некоторые правила конструирования.

Memory Expansion

Один канал Direct Rambus максимум может поддерживать 32 чипа Direct RDRAM. В материнской плате может использоваться до трех RIMM-модулей. Используя 64-Мбит, 128-Мбит и 256-Мбит устройства, максимальная емкость памяти на канал достигает 256 Мбайт, 512 Мбайт и 1Гбайт соответственно. Для поддержки целостности канала все свободные RIMM-слоты должны заполняться continuity-модулями.

Чтобы расширить канал сверх 32 устройств, могут использоваться два чипа повторителя. С одним повторителем канал может поддерживать 64 устройства на 6 RIMM-модулях, а с двумя - 128 устройств на 12.

Direct Rambus DRAM

Чипы Direct Rambus DRAM составляют часть подсистемы Rambus, запоминающую данные. Все устройства в системе электрически расположены на канале между контроллером и терминатором. Устройства Direct Rambus могут только отвечать на запросы контроллера, который делает их шину подчиненной или отвечающей. Устройства можно разделить на две части.

Технология Direct Rambus представляет собой третий этап развития памяти RDRAM. Впервые память RDRAM появилась в 1995 г., работала на частоте 150 МГц и обеспечивала пропускную способность 600 Мбайт/с. Она использовалась в станциях SGI Indigo2 IMPACTtm, в приставках Nintendo64, а также в качестве видеопамяти. Следующее поколение RDRAM появилось в 1997 г. под названием Concurrent RDRAM. Новые модули были полностью совместимы с первыми. Но за год до этого события в жизни компании произошло не менее значимое событие. В декабре 1996 г. Rambus, Inc. и Intel Corporation объявили о совместном развитии памяти RDRAM и продвижении ее на рынок персональных компьютеров.


 

Совместимость типов памяти

В начале статьи мы упомянули одну из возможных проблем совместимости. Но тот случай скорее является курьезом, чем действительно проблемой. Сейчас поговорим о совместимости разных типов памяти несколько подробнее.

Сначала о существующих форм-факторах. В качестве оперативной памяти используются модули SIMM, DIMM, RIMM, SO-DIMM и SO-RIMM. Все они имеют разное количество контактов. Модули SIMM сейчас встречаются только в старых моделях материнских плат, а им на смену пришли 168-контактные DIMM. Модули SO-DIMM и SO-RIMM, имеющие меньшее количество контактов, чем стандартные DIMM и RIMM, широко используются в портативных устройствах. Модули RIMM можно встретить в платах на новом чипсете Intelr 820 (на момент сдачи статьи ни платы, ни модули в продаже не появились).


Модуль памяти SO-DIMM. 

Совпадение форм-факторов модуля и разъема не всегда стопроцентно гарантирует работоспособность модуля. Для сведения к минимуму риска использования неподходящего устройства применяются так называемые ключи. В модулях памяти такими ключами являются один или несколько вырезов. Этим вырезам на разъеме соответствуют специальные выступы. Так в модулях DIMM используется два ключа. Один из них (вырез между 10 и 11 контактами) отвечает за буферизованность модуля (модуль может быть буферизованным или небуферизованным), а второй (вырез между 40 и 41 контактами) - за рабочее напряжение (может быть 5В или 3.3В).


 
Модуль памяти DDR DIMM.

Часто задается вопрос о возможности использования модулей памяти с покрытием контактов, отличным от покрытия контактов разъема. Материал, используемый для покрытия модулей и разъемов, должен совпадать. Мотивируется это тем, что при различных материалах возможно появление гальванической коррозии, и, как следствие, разрушение модуля. Хотя такое мнение не лишено оснований, но, как показывает опыт, использование модулей и разъемов с разным покрытием никак не сказывается на работе компьютера.

Поддержка различных типов памятиEDO RAMSDRAMVCMSDRAM IIRDRAM
Intel 440EX++   
Intel 440LX++   
Intel 440ZX +   
Intel 810 +   
 (PC100) 
Intel 820 +  +
Intel 440BX +   
Intel 440GX +   
Intel 840 +  +
 (PC100) (PC600/800)
Intel 450NX++   
VIA Apollo MVP3/4++ + 
VIA Apollo Pro/Pro+++   
VIA Apollo Pro133 ++  
 (HSDRAM)(VCM133) 
VIA Apollo Pro133A ++  
 (PC133)(VCM133) 
VIA Apollo KX133 ++  
 (PC133)(VCM133) 
ALI Alladin 4/4+/V/PRO II++   
ALI Alladin TNT2+++  

Следующие несколько строк адресованы любителям проводить различные опыты. Ради интереса мы хотели заставить 16-Мбайт SIMM'ы функционировать на частоте 100-МГц шины памяти. Документация запрещала выставлять такую частоту модулям SIMM и работать им совместно с модулями DIMM. Нарушив оба требования, включили компьютер. Как это ни странно, он заработал и работал без сбоев. Гарантировать, что память работала на 100 МГц, нельзя, потому что не исключена возможность автоматического понижения частоты материнской платой, но, осмотрев SIMM'ы через некоторое время, мы увидели, что их контакты сильно почернели. Это позволило нам предположить, что SIMM'ы действительно работали на предложенной частоте. Можно сделать вывод, что если уж 60-нс SIMM'ы нормально работают на частоте 100 МГц, то 10-нс DIMM и подавно будет работать без каких-либо побочных эффектов. Следовательно, такие DIMM'ы спокойно можно считать соответствующими спецификации PC100. Но помните: проводя подобные эксперименты, вы всю ответственность за возможные последствия берете на себя, и при выходе из строя какого-либо компонента системы вас не спасет никакая гарантия. (Кстати, системная плата, на которой проводился опыт, через несколько недель работы в таком режиме сгорела. Выводы делайте сами.)

Иногда в руководствах на материнские платы можно найти ряд рекомендаций по применяемым модулям памяти, но не всем им необходимо следовать. Использование неподходящих модулей, а иногда и полностью соответствующих требованиям может вызывать непредсказуемые сбои в работе компьютера. Так что будьте очень внимательны при выборе "мозгов" для вашего друга, а в случае неуверенности в своих силах следует обратиться к специалисту за помощью.


 

Производители чипов памяти

Существует много фирм, производящих чипы и модули памяти. Их можно разделить на brand-name и generic-производителей.

Как подобрать требуемый чип памяти?
На памяти, соответствующей стандарту SDRAM PC100, должна находиться соответствующая наклейка вида PC100R-abc-def:
  • R (может отсутствовать) указывает на то, что перед вами регистровый модуль (registered). 
  • а — CAS Latency. 
  • b — tRCD (в циклах). Указывает минимальное время между сигналами RAS и CAS. 
  • c — tRP (в циклах). Указывает минимальное время между командами. 
  • d — tAC в нс. 
  • e — ревизия SPD, используемая на этом DIMM’е. 
  • f — 0.

Вместо PC100 может указываться и другое значение, например PC133. Это лишь означает, что соответствующие параметры указаны при другой частоте.
Для памяти, соответствующей новому стандарту PC133, наклейка должна иметь вид PC100m-abc-dde-f: 

  • m — тип модуля. U = небуферизованный DIMM (отсутствуют регистры на нем). 
  • a, b, c , e — соответствуют предыдущему описанию. 
  • dd — tAC (into 50 pF load) без десятичной точки. 54 = 5,4 нс tAC.

Пример:
PC133U-333-542-B
Это небуферизованный PC133 DIMM с CL = 3, tRCD = 3, tRP = 3 и tAC = 5,4 нс, он использует вторую ревизию JEDEC SPD и произведена на основе Intel x8 LC.
Что касается буквы U, то можно сказать, что вся SDRAM-память, используемая в качестве оперативной, является небуферизованной, и в статье речь шла именно о таком типе. Сейчас появляются регистровые (registered) модули, представляющие собой некоторый аналог буферизованных для SDRAM DIMM.

При покупке (особенно на рынках) хорошо бы лишний раз убедиться в правильности предоставляемой продавцом информации (как говорится, доверяй, но проверяй). Произвести такую проверку можно расшифровав имеющуюся на чипе строку букв и цифр (как правило, самую длинную) с помощью соответствующего databook и материалов, находящихся на сайте производителя. Но часто бывает, что необходимой информации не оказывается под рукой. И все же своей цели можно добиться, т. к. большинство производителей придерживаются более или менее стандартного вида предоставления информации (исключение составляют Samsung и Micron). По маркировке чипа можно узнать производителя, тип памяти, рабочее напряжение, скорость доступа, дату производства и др.